
International Journal of Solids and Structures 41 (2004) 159–175

www.elsevier.com/locate/ijsolstr
A thermoelastic problem for interface cracks
with contact zones

I.V. Kharun *, V.V. Loboda

Department of Theoretical and Applied Mechanics, Dniepropetrovsk National University,

Naukova line 13, Dniepropetrovsk 49050, Ukraine

Received 4 March 2003; received in revised form 24 August 2003
Abstract

A problem of thermoelasticity for a set of cracks situated on the interface of two dissimilar isotropic solids under a

combined tension–shear loading and uniform heat flow is considered. The cracks considered are assumed to be com-

pletely open, partially closed with frictionless thermally-conducted contact zones and completely closed. By means of

the complex-function method the problem is reduced to a non-homogeneous Dirichlet–Riemann boundary value

problem, which has been solved in closed form. For the determination of the contact zone lengths the condition of

smooth closure of the crack faces has been used and a set of transcendental equations has been obtained. The closed-

form expressions for the stresses on the interface and the derivatives of the displacement jumps across the interface as

well as the stress intensity factors have been obtained. The numerical examples for a crack with one contact zone and

for a crack with two contact zones have been presented. For these cases the dependencies of the stress intensity factors

and the relative contact zone lengths with respect to the coefficient of the intensity of thermal and mechanical loading

for various thermoelastic constants are presented, and a comparison of the results concerning the crack with one and

two contact zones has been performed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of an interface crack attracted a considerable attention in the literature because of its

importance for applications. Starting from a pioneer paper by Williams (1959) numerous essential results

have been obtained by using classical (open crack) model possessing an oscillating singularity at the crack
tips. Particularly in the frame of this assumption an interface crack with partially insulated crack surfaces in

an isotropic bimaterial under heat flow has been considered analytically by Brown and Erdogan (1968). A

heat transmission coefficient between the adjusted crack surfaces has been taken into account by Kuo

(1990), and the stress intensity factors for an insulated and partially insulated interface crack in an isotropic
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bimaterial under heat flow has been determined by Lee and Shul (1991) and Lee and Park (1995), res-

pectively.

To eliminate the interpenetration of crack faces near the crack tips a new model which takes into account

the crack faces contact zones has been initiated by Comninou (1977). Concerning a pure mechanical
loading this model has been analytically studied and further developed in the papers by Atkinson (1982),

Simonov (1985), Gautesen and Dundurs (1987), Dundurs and Gautesen (1988) Gautesen (1992, 1993),

Loboda (1993). As for a thermal loading a contact zone model for an interface crack in an anisotropic

bimaterial has been analytically considered by Herrmann and Loboda (2001) and for a piezoelectric bi-

material it has been studied by Qin and Mai (1999). It is worth to note that Herrmann and Loboda (2001)

considered a single crack with one contact zone and in the paper by Qin and Mai (1999) thermally insulated

contact zones have been assumed and the problem has been reduced to the singular integral equation that

has been solved numerically. The axisymmetric problem for a thermally insulated penny-shaped interface
crack with a contact zone under tension-thermal loading has been studied by means of the method of

singular integral equations by Martin-Moran et al. (1983) and Barber and Comninou (1983). However, to

the author�s knowledge a plane problem for an arbitrary number of interface cracks with contact zones in
an isotropic bimaterial under thermomechanical loading has not been studied earlier.

In the present paper an exact analytical solution for a set of interface cracks which can be completely

open, partially closed with frictionless thermally-conducted contact zones and completely closed under a

thermomechanical loading is presented. The transcendental equations for the determination of the real

contact zone lengths are formulated. The results of the numerical analysis have been presented for a single
crack with two and one contact zones.
2. Formulation of the problem

Consider a plane problem for a bimaterial composed of two dissimilar isotropic semi-infinite spaces (in

the case of plane strain) or planes (in the case of plane stress) with thermomechanical parameters Ek

(Young�s moduli), mk (Poisson�s ratios), kk (coefficients of thermal conductivity) and ak (coefficients of

thermal expansion), where the subscript k ¼ 1; 2 means that the respective term refers to the upper and
lower half-planes, respectively. A set of cracks is assumed on the interface. Under the influence of a uniform

tension–shear loading ðr–sÞ and uniform heat flux ðq1
2 Þ applied at infinity, the cracks may partially or

completely open. The open parts of the cracks will be regarded as thermally insulated and the contact

regions as frictionless and perfectly thermally conducted. The points of transition from the bonded interface

to contact regions are denoted as ai ði ¼ 1; 2; . . . ; IÞ, from the separation to the contact regions, bj

ðj ¼ 1; 2; . . . ; JÞ and from the bond to separation regions, cn ðn ¼ 1; 2; . . . ;NÞ (Fig. 1). The stresses rð1Þ1
11 and

rð2Þ1
11 shown in Fig. 1 are applied at infinity in order for the continuity condition at infinity will be satisfied.

They should satisfy the following equality (Rice and Sih, 1965)
1þ j1
l1

rð1Þ1
11 � 1þ j2

l2
rð2Þ1
11 ¼ j2 � 3

l2

�
� j1 � 3

l1

�
r;
in which
lk ¼
Ek

2ð1þ mkÞ
; jk ¼

3� 4mk for a plane strain;
3�mk
1þmk

for a plane stress:

�

As it can be seen in the following, these stresses do not influence on the thermomechanical fields along the
interface and, consecutively, on the SIFs and contact zone lengths.



Fig. 1. Geometry of the problem.
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The continuity conditions at y ¼ 0 in the Cartesian coordinates x, y can be written as
½r22ðxÞ� � i½r12ðxÞ� ¼ 0;
½q2ðxÞ� ¼ 0;

�
x 2 L þ M þ U

½u1ðxÞ� þ i½u2ðxÞ� ¼ 0; x 2 U ;

½T ðxÞ� ¼ 0; x 2 U þ L;

�
ð1a; bÞ
where rðkÞ
12 ðx; yÞ, r

ðkÞ
22 ðx; yÞ, u

ðkÞ
j ðx; yÞ, qðkÞ

j ðx; yÞ, T ðkÞðx; yÞ are the components of the shear and normal stresses,
the displacements, the heat flux and the temperature, respectively; the superscripts k ¼ 1 and k ¼ 2 denote
that associated quantity refers to the upper and lower half-planes, respectively. The brackets denote here

the jump of the correspondent function across the interface, i.e. ½f ðxÞ� ¼ f ð1Þðx; 0Þ � f ð2Þðx; 0Þ. The interface
regions M , L are defined as follows:
M ¼
[ðNþJÞ=2

n¼1
Mn; L ¼

[ðIþJÞ=2

n¼1
Ln;
U , Mn and Ln denote the bond, gaps (open parts of the cracks) and contact zones, respectively.

The conditions (1a) mean that the fields of stresses and heat flux ðr12; r22; q2Þ have no discontinuity on
the entire interface ðL þ M þ UÞ. Next conditions (1b) mean that the fields of displacements and temper-
ature are continuous on the bonded parts of the interface ðUÞ and the temperature is continuous in the
contact regions ðLÞ as well since we assume that the contact regions are perfectly thermally conducted.
The boundary conditions in the contact regions ðLÞ and on the open parts of the crack surfaces ðMÞ can

be presented in the form
rð1Þ
12 ðx; 0Þ ¼ 0;

½u2ðxÞ� ¼ 0;

(
x 2 L

rð1Þ
22 ðx; 0Þ � ir

ð1Þ
12 ðx; 0Þ ¼ 0;

qð1Þ
2 ðx; 0Þ ¼ 0;

(
x 2 M : ð1c; dÞ
The conditions (1c) express that contact interaction is frictionless and the crack faces is in contact for x 2 L.
Expressions (1d) mean that the open parts of the crack faces are unloaded and thermally insulated.

It is expedient to represent the stresses rðkÞ
ij ðx; yÞ and heat flux qðkÞ

i ðx; yÞ fields in the form

rðkÞ

ij ðx; yÞ ¼ rðkÞ1
ij þ r
ðkÞ

ij ðx; yÞ; qðkÞ
i ðx; yÞ ¼ qðkÞ1

i þ q
ðkÞ
i ðx; yÞ; ð1eÞ
where rðkÞ1
22 ¼ r, rðkÞ1

12 ¼ s, qðkÞ1
2 ¼ q1

2 , q
ðkÞ1
1 ¼ 0, r
ðkÞ

ij ðx; yÞ and q
ðkÞ
i ðx; yÞ are the fields perturbed by cracks

which vanish at infinity. Allowing for (1e), the boundary conditions (1c, d) for r
ðkÞ
ij ðx; yÞ and q
ðkÞ

2 ðx; yÞ,
acquire the following form
rð1Þ
12 ðx; 0Þ ¼ �s;

½u2ðxÞ� ¼ 0;

(
x 2 L

rð1Þ
22 ðx; 0Þ � ir

ð1Þ
12 ðx; 0Þ ¼ �r þ is;

qð1Þðx; 0Þ ¼ �q1;

(
x 2 M : ð1f ; gÞ
2 2
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Taking into account that in the following the perturbed fields only will be considered the asterix (*) here

and in the following in the designation of thermomechanical fields is dropped out.

It should be noted, that the lengths of contact zones (position of the points bj) are unknown initially and

are dependent on the applied load and crack interaction. In the following analysis these positions will be
defined from the additional condition which are equivalent to those suggested by Comninou (1977).
3. Complex-function representation of thermomechanical fields

For a plane problem of thermoelasticity, the following Muskhelishvili�s (1975) complex-function rep-
resentation for stress and displacement fields is used
rðkÞ
22 ðx; yÞ � ir

ðkÞ
12 ðx; yÞ ¼ UkðzÞ þ UkðzÞ þ zU0

kðzÞ þ WkðzÞ;
2lk½u

ðkÞ
1 ðx; yÞ þ iuðkÞ

2 ðx; yÞ� ¼ jkukðzÞ � zUkðzÞ � wkðzÞ þ ð1þ jkÞHk

R
hkðzÞdz;

(
ð2Þ
where lk ¼ Ek=2ð1þ mkÞ;
Hk ¼
akEk
2ð1�mkÞ for a plane strain;

akEk
2

for a plane stress;

(
jk ¼

3� 4mk for a plane strain;
3�mk
1þmk

for a plane stress;

(

UkðzÞ ¼ u0
kðzÞ, WkðzÞ ¼ w0

kðzÞ, hkðzÞ are the analytical functions of the complex variable z ¼ x þ iy in the
upper ðk ¼ 1Þ and lower ðk ¼ 2Þ half-planes. The overbar denotes complex conjugation. The prime (0)
stands for differentiation on the corresponded argument.

The temperature and the heat flux components which define by the formulae
qðkÞ
1 ðx; yÞ ¼ �kk

oT ðkÞðx; yÞ
ox

; qðkÞ
2 ðx; yÞ ¼ �kk

oT ðkÞðx; yÞ
oy
can be expressed in terms of the functions hkðzÞ as
T ðkÞðx; yÞ ¼ hkðzÞ þ hkðzÞ; qðkÞ
1 ðx; yÞ � iqðkÞ

2 ðx; yÞ ¼ �2kkh
0
kðzÞ: ð3a; bÞ
For the further analysis it is expedient to introduce the following functions
xkðzÞ ¼ z�uu0
kðzÞ þ �wwkðzÞ; ð4aÞ
analytical in the respective half-planes. After replacing z by �zz in (4a), one has
wkðzÞ ¼ xkð�zzÞ � �zzu0
kðzÞ; ð4bÞ
that gives after differentiation
w0
kðzÞ ¼ x0

kð�zzÞ � u0
kðzÞ � �zzu00

kðzÞ: ð4cÞ
By inserting (4b) and (4c) into (2) and denoting x0
kðzÞ ¼ XkðzÞ, Eq. (2) can be rewritten in the form
rðkÞ
22 ðx; yÞ � ir

ðkÞ
12 ðx; yÞ ¼ UkðzÞ þ ðz � �zzÞU0

kðzÞ þ Xkð�zzÞ;
2lk½u

ðkÞ
1 ðx; yÞ þ iuðkÞ

2 ðx; yÞ� ¼ jkukðzÞ þ ð�zz � zÞUkðzÞ � xkð�zzÞ þ ð1þ jkÞHk

R
hkðzÞdz:

(
ð5Þ
Using expressions (3a), (3b) and (5), satisfying the continuity conditions (1a) and (1b) and denoting the
boundary values of the functions analytical in the upper and lower half-planes by the superscripts ‘‘+’’ and

‘‘)’’ for y ! þ0 and y ! �0, respectively, one can obtain
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Uþ
1 � Xþ

2 ¼ U�
2 � X�

1 ; x 2 L þ M þ U ;

k1h
0þ
1 þ k2h

0
2

þ ¼ k2h
0�
2 þ k1h

0
1

�
; x 2 L þ M þ U

(
ð6aÞ
and
j1
2l1

Uþ
1 þ 1

2l2
Xþ
2 þ

ð1þj1ÞH1
2l1

hþ
1 ¼ j2

2l2
U�
2 þ 1

2l1
X�
1 þ

ð1þj2ÞH2
2l2

h�
2 ; x 2 U ;

h0þ
1 � h0

2

þ ¼ h0�
2 � h0

1

�
; x 2 U þ L:

8<: ð6bÞ
The argument x has been dropped in the last equations for the sake of shortness. Since two sides of (6a) and
(6b) represent the boundary values of two analytical functions in the respective half-planes, therefore, they

can be analytically extended into the entire plane, so that one can write
AðzÞ ¼
k1h

0
1ðzÞ þ k2h

0
2ðzÞ; y > 0;

k2h
0
2ðzÞ þ k1h

0
1ðzÞ; y < 0;

(
ð7aÞ

BðzÞ ¼
U1ðzÞ � X2ðzÞ; y > 0;

U2ðzÞ � X1ðzÞ; y < 0:

�
ð7bÞ
The function AðzÞ and BðzÞ are analytical in the whole plane, and
GðzÞ ¼
j1
2l1

U1ðzÞ þ 1
2l2

X2ðzÞ þ ð1þj1ÞH1
2l1

h1ðzÞ; y > 0;

j2
2l2

U2ðzÞ þ 1
2l1

X1ðzÞ þ ð1þj2ÞH2
2l2

h2ðzÞ; y < 0;

8<: ð8aÞ

h0ðzÞ ¼
h0
1ðzÞ � h0

2ðzÞ; y > 0;

h0
2ðzÞ � h0

1ðzÞ; y < 0;

8<: ð8bÞ
where GðzÞ and h0ðzÞ are analytical in the whole plane except the segments L þ M and M , respectively.
Taking into account that the functions are vanished at infinity, according to Liouvill�s theorem one can
derive AðzÞ ¼ BðzÞ ¼ 0, and the expressions (7a)–(8b) can be rewritten as follows
hkðzÞ ¼ kmhðzÞ=ðk1 þ k2Þ; �hhkðzÞ ¼ �kmhðzÞ=ðk1 þ k2Þ; m ¼ f1 if k ¼ 2 and 2 if k ¼ 1g ð9Þ

and
U1ðzÞ ¼ X2ðzÞ ¼ g GðzÞ � ð1þj1ÞH1
2l1

h1ðzÞ
h i

; y > 0;

U2ðzÞ ¼ X1ðzÞ ¼ gc GðzÞ � ð1þj2ÞH2
2l2

h2ðzÞ
h i

; y < 0;

8><>: ð10Þ
where g ¼ 2l1l2=ðj1l2 þ l1Þ, c ¼ ðj1l2 þ l1Þ=ðj2l1 þ l2Þ.
Inserting (9) and (10) into (3b) and (5) and writing the obtained expressions for the interface ðy ¼ 0Þ

result in
rð1Þ
22 ðx; 0Þ � ir

ð1Þ
12 ðx; 0Þ ¼ g GþðxÞ þ cG�ðxÞ � ~gg½hþðxÞ þ ~cch�ðxÞ�

h i
;

½u0
1ðxÞ� þ i½u0

2ðxÞ� ¼ GþðxÞ � G�ðxÞ;

qð1Þ
2 ðx; 0Þ ¼ �i~kk½h0þðxÞ þ h0�ðxÞ�;

8>>><>>>: ð11Þ
where ~kk ¼ k1k2=ðk1 þ k2Þ, ~gg ¼ 2d1~kk, ~cc ¼ cd2=d1 and dk are the distortivities (Martin-Moran et al., 1983) of

the respective half-planes which define by the formulae
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dk ¼
akð1þmkÞ

kk
for a plane strain;

ak=kk for a plane stress:

(

4. Formulation and solution of the boundary value problem

By use of the formula (113) from the condition (1d2) the following Hilbert problem can be derived
h0þðxÞ þ h0�ðxÞ ¼ �iq1
2 =

~kk; x 2 M : ð12Þ
According to Muskhelishvili (1975) the solution to this problem can be presented as
h0ðzÞ ¼ � iq1
2

2~kkf ðzÞ
1

pi

Z
M

f þðxÞdx
x � z

�
þ RðzÞ

�
; ð13Þ
where
f ðzÞ ¼
YJ

j¼1
ðz � bjÞ1=2

YN
n¼1

ðz � cnÞ1=2; RðzÞ ¼
Xp

n¼0
Rnzn; p ¼ ðJ þ NÞ=2;
Rn are constants to be determined from the condition at infinity and single-valuedness conditions which can

be written as
h0ðzÞ ¼ Oðz�1Þ; z ! 1;

Z
Mn

½h0þðxÞ � h0�ðxÞ�dx ¼ 0; n ¼ 1; . . . ; p:
Making use of these conditions one can derive the following expressions for Rn
Rp ¼ 1; Rp�1 ¼
1

2

XJ

j¼1
bj

 
þ
XN

n¼1
cn

!
; r ¼W�1v; ð14Þ
in which
r ¼ ½R0; . . . ;Rp�2�T ; Wnj ¼
Z

Mn

xj dx
f þðxÞ ; vn ¼ �

Z
Mn

xp�1ðx þ Rp�1Þ
f þðxÞ dx; n ¼ 1; . . . ; p � 2:
Having evaluated the integral in (13) the expression for h0ðzÞ acquires the form
h0ðzÞ ¼ � iq
1
2

2~kk
1

�
� f 1ðzÞ � RðzÞ

f ðzÞ

�
; ð15aÞ
where f 1ðzÞ is a principal part of the expansion of the function f ðzÞ at infinity. Integrating Eq. (15a) gives
hðzÞ ¼ � iq
1
2

2~kk
½z � ftðzÞ�; ftðzÞ ¼

Z
f 1ðzÞ � RðzÞ

f ðzÞ dz: ð15bÞ
It is worth to note that f þ
t ðxÞ ¼ �f �

t ðxÞ, x 2 M . The function ftðzÞ has the following behaviour at infinity
ftðzÞ ¼ z þ b0 þ b1=z þOðz�2Þ; z ! 1: ð16Þ
Satisfying the remaining boundary conditions (1f) and (1g) by means of (11), taking into account (15b)

and (16) and introducing the new function
F ðzÞ ¼ GðzÞ � iq1
2 d1 c
ftðzÞ½ � c
ðz þ b0Þ� þ ~rr � i~ss; ð17aÞ
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in which c
 ¼ ð1� ~ccÞ=ð1� cÞ, ~rr ¼ r=gð1þ cÞ and ~ss ¼ s=gð1þ cÞ lead to

F þðxÞ þ cF þðxÞ ¼ 0; x 2 M ;

ImF �ðxÞ ¼ q
ðxÞ; x 2 L;

�
ð17bÞ
where q
ðxÞ ¼ q1
2 d1c0ftðxÞ, c0 ¼ ðc
 � c
Þ, c
 ¼ ð1þ ~ccÞ=ð1� cÞ.

The derived problem (17b) is a combined non-homogeneous Dirichlet–Riemann boundary value

problem. A general solution of such a problem was given by Nakhmein and Nuller (1988), and concerning

the present case a solution unbounded at all points ai, bj, cn can be written as
F ðzÞ ¼ X ðzÞF
ðzÞ; F
ðzÞ ¼ P ðzÞ þ I1ðzÞ þ iY ðzÞ½QðzÞ þ I2ðzÞ�; ð18aÞ

in which
X ðzÞ ¼ eiuðzÞ

f ðzÞpðzÞ ; pðzÞ ¼
YðIþJÞ=2

l¼2
ðz � dlÞ; f ðzÞ ¼

YJ

j¼1
ðz � bjÞ1=2

YN
k¼1

ðz � ckÞ1=2; ð18bÞ

uðzÞ ¼ �eZðzÞ
Z

M

dx
ZðxÞðx � zÞ � iZðzÞ

XðIþJÞ=2

n¼1

Z
Ln

hnðxÞ
ZþðxÞðx � zÞ dx; e ¼ ln c

2p
; ð18cÞ

ZðzÞ ¼
YI

i¼1
ðz � aiÞ1=2

YJ

j¼1
ðz � bjÞ1=2; Y ðzÞ ¼

YI

i¼1
ðz � aiÞ�1=2

YJ

j¼1
ðz � bjÞ1=2; ð18dÞ

I1ðzÞ ¼
1

p

Z
L

q1ðxÞ
x � z

dx; q1ðxÞ ¼ � cos½phkðxÞ�q
ðxÞf ðxÞpðxÞsh ~uuðxÞ; x 2 Lk; ð18eÞ

I2ðzÞ ¼
1

pi

Z
L

q2ðxÞ
Y þðxÞðx � zÞ dx; q2ðxÞ ¼ cos½phkðxÞ�q
ðxÞf ðxÞpðxÞch ~uuðxÞ; x 2 Lk; ð18fÞ

~uuðxÞ ¼ �i½u�ðxÞ � phnðxÞ�; x 2 Ln; ð18gÞ

h1ðxÞ ¼ n

1; x 2 L1; hlðxÞ ¼ n


l þ Uðdl � xÞ; x 2 Ll; l ¼ 2; . . . ; ðI þ JÞ=2;
UðxÞ ¼ f1 if x > 0; 0 if x < 0g is the Heaviside�s function. Besides, n

k are integers, dl 2 Ll are unknown

poles of X ðzÞ to be determined from the finiteness conditions for uðzÞ at infinity, which can be written as
e
Z

M

xl�2 dx
ZðxÞ þ i

XðIþJÞ=2

n¼1

Z
Ln

hnðxÞ
ZþðxÞ xl�2 dx ¼ 0; l ¼ 2; . . . ; ðI þ JÞ=2: ð19Þ
Moreover the polynomials P ðzÞ and QðzÞ with real coefficients Ck, Dk have the following form
P ðzÞ ¼
Xmþ1

k¼1
Ckzk; m ¼ J þ ðI þ NÞ=2� 1; QðzÞ ¼

Xnþ1
k¼1

Dkzk; n ¼ I þ ðN þ JÞ=2� 1; ð20aÞ
and the mentioned coefficients are to be determined from the finiteness conditions of F ðzÞ at poles dl
F �

 ðdlÞ ¼ 0; F 0�


 ðdlÞ ¼ 0; ð20bÞ

condition at infinity, which, according to (16) and (17a), can be written as
F ðzÞ ¼ ~rr � i~ss þ p
ftðzÞ þOðz�1Þ; z ! 1 ð20cÞ

and single-valuedness conditions, which, according to the second formula in (11) and (17a), can be pre-
sented in the form
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Z a00n

a0n

½F þðxÞ � F �ðxÞ�dx ¼ �iq1
2 d1c


Z a00n

a0n

½f þ
t ðxÞ � f �

t ðxÞ�dx; ð20dÞ
here a0
n and a00

n denote the left and right crack tips, respectively.

Taking the boundary values of (18a)–(18f) by means of Plemelj�s formulae and using (17a) and (11) the
following expressions for the stresses on the interface and for the derivative of the displacement jumps of

the crack faces can be derived:
rð1Þ
22 ðxÞ

gð1þ cÞ ¼
cos½phkðxÞ�
chðpeÞpðxÞ

P ðxÞ þ p:v: I1ðxÞ
f1ðxÞ

chð~uuðxÞ
�

� peÞ þ iQðxÞ þ p:v: I2ðxÞ
f þ
2 ðxÞ

shð~uuðxÞ � peÞ
�
; x 2 Lk;

ð21Þ

rð1Þ
22 � ir

ð1Þ
12

gð1þ cÞ ¼ exp½iuðxÞ�
pðxÞ

P ðxÞ þ I1ðxÞ
f1ðxÞ

�
þ iQðxÞ þ I2ðxÞ

f2ðxÞ

�
� iq1

2 d1c0ftðxÞ; x 2 U ; ð22Þ

½u0
2ðxÞ� ¼

2chðpeÞ
pðxÞ

P ðxÞ þ I1ðxÞ
if þ
1 ðxÞ

cosu
ðxÞ
�

� QðxÞ þ I2ðxÞ
if þ
2 ðxÞ

sinu
ðxÞ
�
; x 2 M ; ð23Þ

½u0
1ðxÞ� ¼ 2

cos½phkðxÞ�
pðxÞ

P ðxÞ þ p:v: I1ðxÞ
f1ðxÞ

sh ~uuðxÞ
�

þ iQðxÞ þ p:v: I2ðxÞ
f þ
2 ðxÞ

ch ~uuðxÞ
�
; x 2 Lk; ð24Þ

½u0
1ðxÞ� ¼ � 2chðpeÞ

pðxÞ i
P ðxÞ þ I1ðxÞ

f þ
1 ðxÞ

sinu
ðxÞ
�

þ iQðxÞ þ I2ðxÞ
f þ
2 ðxÞ

cosu
ðxÞ
�
þ 2iq1

2 d1c
f
þ
t ðxÞ; x 2 M ;

ð25Þ
here the following notations are introduced: f1ðzÞ ¼ f ðzÞ, f2ðzÞ ¼ f ðzÞ=Y ðzÞ; p.v. means principal value
of the Couchy�s type integrals; u
ðxÞ ¼ u�ðxÞ � pei, x 2 M . Taking boundary values of (18c), one can
derive
~uuðxÞ ¼ �iZþðxÞ e
Z

M

dt
ZðtÞðt � xÞ

"
þ i

XðIþJÞ=2

k¼1

Z
Lk

hkðtÞ
ZþðtÞðt � xÞ dt

#
; x 2 L; ð26aÞ

u
ðxÞ ¼ �ZðxÞ e
Z

M

dt
ZðtÞðt � xÞ

"
þ i

XðIþJÞ=2

k¼1

Z
Lk

hkðtÞ
ZþðtÞðt � xÞ dt

#
; x 2 M : ð26bÞ
Further, for the determination of unknown constants Ck, Dk the coefficients of the following expansions

at infinity are required
ZðzÞ ¼ zðIþJÞ=2½1þ f1=z þ f2=z2 þOðz�3Þ�; Y ðzÞ ¼ zðJ�IÞ=2½1þ g1=z þ g2=z2 þOðz�3Þ�;

1=f ðzÞpðzÞ ¼ z�m½1þ t1=z þ t2=z2 þOðz�3Þ�; uðzÞ ¼ a0 þ a1=z þ a2=z2 þOðz�3Þ;
in which
g1 ¼
1

2

XI

i¼1
ai

 
�
XJ

j¼1
bj

!
; 11 ¼ � 1

2

XI

i¼1
ai

 
þ
XJ

j¼1
bj

!
; t1 ¼

1

2

XN

k¼1
ck

 
þ
XJ

j¼1
bj

!
þ
XðIþJÞ=2

l¼2
dl;

a0 ¼ AðIþJÞ=2; a1 ¼ AðIþJÞ=2þ1 þ AðIþJÞ=2f1; a2 ¼ AðIþJÞ=2þ2 þ AðIþJÞ=2þ1f1 þ AðIþJÞ=2f2; . . .
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Ak ¼ e
Z

M

xk�1 dx
ZðxÞ þ i

XðIþJÞ=2

j¼1

Z
Lj

hjðxÞ
ZþðxÞ xk�1 dx ¼ 0; k ¼ ðI þ JÞ=2; . . .
Due to the last expansions one has for large jzj
X ðzÞ ¼ z�m expðia0Þ½1þ q1=z þ q2=z2 þOðz�3Þ�; z ! 1;
where q1 ¼ t1 þ ia1, q2 ¼ t2 þ ia2 þ it1a1 � a21=2.
Making use of these expressions, the expansion for F ðzÞ acquires the form
F ðzÞ ¼ z expðia0ÞfCmþ1 þ iDnþ1 þ ½Cm þ iðDn þDnþ1g1Þ þ ðCmþ1 þ iDnþ1Þq1�=z

þ ½Cm�1 þ iðDn�1 þDng1 þDnþ1g2Þ þ ðCm þ iðDn þ Dnþ1g1ÞÞq1 þ ðCmþ1 þ iDnþ1Þq2�=z2g þOðz�2Þ:
ð27Þ
By substituting this expansion into the condition at infinity (20c) one obtains
Cmþ1 þ iDnþ1 ¼ v1 expð�ia0Þ;
Cm þ q1ðCmþ1 þ iDnþ1Þ þ iðDn þ g1Dnþ1Þ ¼ v2 expð�ia0Þ;

�
ð28Þ
where v1 ¼ iq1
2 d1c0, v2 ¼ ~rr � i~ss þ v1b0.

Considering further the following equality which can be derived from Plemelj�s formulae
F ðzÞ ¼ 1

2pi

Z
LþM

F þðxÞ � F �ðxÞ
x � z

dx þ const
and expanding the integral at infinity lead to
F ðzÞ ¼ const� 1

2pi

Z
LþM

ðF þðxÞ
�

� F �ðxÞÞdx
�
1

z
þ � � �
Comparing this expression with the single-valuedness condition (20d) and using (27) give the equation for

determination of the constants Cm�1, Dn�1
Cm�1 þ q2ðCmþ1 þ iDnþ1Þ þ q1½Cm þ iðDn þ g1Dnþ1Þ� þ iðDn�1 þ Dng1 þ Dnþ1g2Þ ¼ v3 expð�ia0Þ; ð29Þ
where v3 ¼ �iq1
2 d1c
b1.

The obtained relations (18a)–(18g), (19), (20a)–(20d) represent a complete solution of the combined non-

homogeneous Dirichlet–Riemann boundary value problem (17b) which is mathematically correct for any

admissible positions of the points bj. However, in order for the obtained solution describe the solution of
the mechanical problem formulated above the following auxiliary conditions should be satisfied
½u0
2ðbjÞ� ¼ 0; rð1Þ

22 ðx; 0Þ6 0; x 2 L; ½u2ðxÞ�P 0; x 2 M : ð30Þ
The first equation in (30) means that the gap close smoothly as x ! bj. The remaining inequalities indicate

that the normal stresses at the contact regions are compressive and there is no interpenetration of the crack

surfaces. Using Eq. (23) and the first equation of (30) leads to the following set of transcendental equations

for determination of the contact zone lengths defining the real positions of the points bj
P ðbjÞ þ I1ðbjÞ ¼ 0: ð31Þ
These equations have a number of solutions with respect to each bj, but only those values of bj are the
solutions of the mechanical problem, which satisfy the inequalities in (30). It should be noted as well that

the smooth closure condition is equivalent to the condition of the finiteness of normal stress at the points bj.
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The stress intensity factors (SIFs) at the crack tips ai can be defined as
K1ðaiÞ � iK2ðaiÞ ¼ lim
x!ai

rð1Þ
22 ðx; 0Þ

h
� irð1Þ

12 ðx; 0Þ
i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jai � xj
p

: ð32Þ
Substituting (22) into (33) gives
K1ðaiÞ ¼ 0; K2ðaiÞ ¼ �gð1þ cÞQðaiÞ þ I2ðaiÞ
f 

2 ðaiÞpðaiÞ

; ð33Þ
where f 

2 ðaiÞ ¼ limx!ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx � aij

p
f2ðxÞ.
5. A single crack with two contact zones

Consider now a particular case of the considered problem when a single crack with two contact zones at

the crack tips lies along the interface. In this case one has I ¼ J ¼ 2, N ¼ 0, m ¼ n ¼ 2,
h1ðxÞ ¼ n
; h2ðxÞ ¼
1; x 2 ðb2; dÞ
0; x 2 ðd; a2Þ

�
ðd ¼ d2Þ; Y ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � b1Þðz � b2Þ
ðz � a1Þðz � a2Þ

s
; ð34Þ
pðzÞ ¼ z � d; ZðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � a1Þðz � b1Þðz � a2Þðz � b2Þ

p
; f ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � b1Þðz � b2Þ

p
:

The function uðzÞ can be expressed in this case as follows
uðzÞ ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � b1Þðb2 � a1Þ

p e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz � b2Þðz � a2Þ
ðz � b1Þðz � a1Þ

s
u1ðzÞ

"
þ n
Y ðzÞu2ðzÞ �

u3ðzÞ
Y ðzÞ

#
; ð35Þ
where
u1ðzÞ ¼ ðb1 � a1ÞPðp=2; p1; r0Þ þ ðz � b1ÞKðr0Þ; p1 ¼ p

1

z � a1
z � b1

; p

1 ¼

b2 � b1
b2 � a1

;

u2ðzÞ ¼ ða1 � a2ÞPðp=2; p2; rÞ þ ðz � a1ÞKðrÞ; p2 ¼ p

2

z � a2
z � a1

; p

2 ¼

a1 � b1
a2 � b1

; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1k2
ð1� k1Þð1� k2Þ

s
;

u3ðzÞ ¼ ðb2 � b1ÞPðw; p3; rÞ þ ðz � b2ÞF ðw; rÞ; p3 ¼ p

3

z � b1
z � b2

; p

3 ¼

a2 � b2
a2 � b1

; r02 ¼ 1� r2;

w ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k1Þðd=l � 1=2þ k2Þ

k2ðd=l þ 1=2� k1Þ

s
:

ð36Þ
Here and in the following k1 ¼ ðb1 � a1Þ=l, k2 ¼ ða2 � b2Þ=l, l ¼ b1 � a1; F ðw; rÞ, Eðw; rÞ and Pðw; p; rÞ are
the elliptic integrals of the first, second and third kinds, respectively; KðrÞ, EðrÞ, Pðp; rÞ are the complete
elliptic integrals.

The expressions for a0, a1 and a2 can be obtained by expending (35) in the series at infinity and can be
written in the following form
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a0 ¼
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� k1Þð1� k2Þ
p fek1½Pðp1; r0Þ � Kðr0Þ� þ n
½�Pðp2; rÞ þ ð1� k1ÞKðrÞ�

� ð1� k1 � k2ÞPðw; p3; rÞg;

a1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k1Þð1� k2Þ

p
e½Kðr0Þ

8<: � Eðr0Þ� þ n
EðrÞ � Eðw; rÞ þ
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r sin2 w

q
sin 2w

2ð1� k1 � k2 sin
2 wÞ

9=;;

a2 ¼ 0:25ðk2 � k1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� k1Þð1� k2Þ

p
e½Kðr0Þ

8<: � Eðr0Þ� þ n
EðrÞ � Eðw; rÞ

�
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r sin2 w

q
sin 2w

2ð1� k1 � k2 sin
2 wÞ2ðk2 � k1Þ

1
�

� k1 � k2 sin
2 w � 2ð1� k1Þð1� k1 � k2Þ

�9=;;
Eq. (19) for the determination of d in this case takes the following form
F ðw; rÞ ¼ x ¼ eKðr0Þ þ n
KðrÞ: ð37Þ

Since the elliptic integral F ðw; rÞ is positive and F ðw; rÞ < KðrÞ then the following condition for determi-
nation of n
 follows from (37)
�eKðr0Þ=KðrÞ < n
 < 1� eKðr0Þ=KðrÞ:

Solving Eq. (37) for w and then (36) for d leads to the following expression
d ¼ ð0:5� k2Þð1� k1Þ þ k2ð0:5� k1Þsn2ðx; rÞ
1� k1 � k2sn2ðx; rÞ ;
where snðx; rÞ is Jacobi elliptic sine-function.
The polynomials P ðzÞ and QðzÞ which are determined by the formula (20a) can be presented in the form
P ðzÞ ¼ ~rr
cos b

P1ðzÞ þ q1
2 d1c0P2ðzÞ; QðzÞ ¼ ~rr

cos b
Q1ðzÞ þ q1

2 d1c0Q2ðzÞ; ð38Þ
where
P1ðzÞ ¼ a1ðd
�

� zÞ � ða1 þ dnÞ n

n0

�
sinða0 þ bÞ þ ðd

�
� zÞ k1 � k2

2

�
� z
�

þ d
�

� a1n � k1 � k2
2

�
n

n0

�
cosða0 þ bÞ;

Q1ðzÞ ¼ zðd
�

� zÞ þ ða1 þ dnÞ n

n0

�
sinða0 þ bÞ þ a1ðd

�
� zÞ � d

�
� a1n � k1 � k2

2

�
1

n0

�
cosða0 þ bÞ;

P2ðzÞ ¼ P ð1ÞðzÞ sinða0Þ þ P ð2ÞðzÞ cosða0Þ; Q2ðzÞ ¼ Qð1ÞðzÞ sinða0Þ þ Qð2ÞðzÞ cosða0Þ;

P ð1ÞðzÞ ¼ 1

16n0 ðnð8d2 � 1� 8na2 þ k1ð2þ k1Þ � 8dða1nþ k1 � k2Þ þ 2k2 � 6k1k2 þ k22

� 4a1ða1 � nðk1 � k2ÞÞÞ � ðd � zÞð8z2 � 1� 4a21 þ k1ð2þ k1Þ � 8zðk1 � k2Þ þ 2k2 � 6k1k2 þ k22Þ

þ pð1� k1 � k2Þ2ðn0ðd � zÞ þ nÞÞ;
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P ð2ÞðzÞ ¼ 1

16n0 ðnð8ða2 þ a1ðd � k1 þ k2ÞÞ þ nð8d2 � 1� 4a21 � 4dðk1 � k2Þ þ pð1� k1 � k2Þ2ÞÞ

� 8ðd � zÞða2 þ a1ðz � k1 þ k2ÞÞn0Þ;

Qð1ÞðzÞ ¼ 1

16n0 ð4nð2a2 þ a1ð2d � k1 þ k2ÞÞ � ð8d2 � 1� 4a21 � 8dðk1 � k2Þ þ k1ð2þ k1Þ þ k2ð2þ k2Þ

� 6k1k2 þ pð1� k1 � k2Þ2Þ þ 4ðd � zÞð2a2 þ a1ð2z � k1 þ k2ÞÞn0Þ;

Qð2ÞðzÞ ¼ 1

16n0 ð8ða2 þ a1ðd � k1 þ k2ÞÞ þ nð8d2 � 1� 4a21 � 4dðk1 � k2ÞÞ

þ ðd � zÞð4zð2z � k1 þ k2Þ � 1� 4a21Þn
0 þ pð1� k1 � k2Þ2ððd � zÞn0 þ 8nÞÞÞ;
where p ¼ c
=c0, tan b ¼ d ¼ s
r. Expressions for the integrals (18e) and (18f) take the form
IkðzÞ ¼ q1
2 d1c0~IIkðzÞ; ~IIkðxÞ ¼ � cosðpn
Þ

p

Z b1

�a

I
k ðtÞ
t � x

dt � ð�1Þk 1

p

Z d

b2

I
k ðtÞ
t � x

dt
�

�
Z a

d

I
k ðtÞ
t � x

dt
�
; ð39Þ
where
I
1 ðtÞ ¼ ðt � b1Þðt � b2Þðt � dÞsh ~uuðtÞ; I
2 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � b1Þðt � b2Þða2 � t2Þ

p
ðt � dÞch ~uuðtÞ:
Inserting (381) and (391) into Eq. (31) one can derive a set of two transcendental equations for the

determination of the contact zone lengths (or bj), which can be written in the form
~qqP1ðb1Þ þ ð1þ cÞc0 cos b½P2ðb1Þ þ eII1ðb1Þ� ¼ 0;
~qqP1ðb2Þ þ ð1þ cÞc0 cos b½P2ðb2Þ þ eII1ðb2Þ� ¼ 0;

(
ð40aÞ
where ~qq ¼ r
q1
2

d1g
. The above equations can be rewritten in the following form, which is much convenient for

numerical analysis
P2ðb1Þ þ eII1ðb1Þ
P2ðb2Þ þ eII1ðb2Þ ¼ � P1ðb1Þ

P1ðb2Þ
;

~qq
ð1þ cÞc0 cos b

¼ � P2ðb1Þ þ eII1ðb1Þ
P1ðb1Þ

: ð40bÞ
For the solution of the system (40b), it is expedient to assign a value of b1 ðb2Þ and to find further b2 ðb1Þ
from the first equation (40b). Then the associated value of ~qq can be found directly from the second formula
(40b).

According to Eq. (34) and (382) and (391), The SIFs can be expressed as
K2ðaiÞ
r
ffiffi
l

p ¼ 1

lðd � aiÞ
Q1ðaiÞ
cos b

�
þ ð1þ cÞc0

~qq
½Q2ðaiÞ þ eII2ðaiÞ�

�
: ð41Þ
Consider now an easier case when the external shear loading is absent, i.e. s ¼ 0 and, consequently,
b2 ¼ �b1 � b. The equation for determination of the contact zone lengths (or b) can be obtained in a
simpler form if we subtract the first equation of (40a) from the second that leads to
b
~qq

ð1þ cÞc0

"
� ða2 � a1dÞ cos a0 þ 0:5½b2ð1þ pÞ � a21� sin a0 þ J 
ðbÞ

d cos a0 þ a1 sin a0

#
¼ 0; ð42Þ
where
J 
ðbÞ ¼ � cosðpn
Þ
p

Z �b

�a
J
ðxÞdx þ

1

p

Z d

b
J
ðxÞdx �

1

p

Z a

d
J
ðxÞdx; J
ðxÞ ¼ ðx � dÞsh ~uuðxÞ:
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As can be seen from this equation, there are only three independent dimensionless parameters, namely

d2=d1, e (or c) and ~qq which contact zone lengths depend on.
6. One crack with one contact zone

For the case of a crack with one contact zone at the right crack tip one can write similarly to Section 5
pðzÞ ¼ 1; hkðxÞ ¼ 0; a0 ¼ e ln
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p ; a1 ¼ el
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
; a2 ¼ �0:25el2k

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
;

uðzÞ ¼ 2e log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðz þ l=2Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z � l=2þ kl

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kÞðz � l=2Þ

p ; f ðzÞ ¼ ftðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz þ l=2Þðz � l=2þ klÞ

p
:

Polynomials P ðzÞ and QðzÞ which are determined for a general case by the formula (20a) can be presented
by the formulae (38) in which
P1ðzÞ ¼ ðz þ kl=2Þ cosða0 þ bÞ � a1 sinða0 þ bÞ; Q1ðzÞ ¼ �a1 cosða0 þ bÞ � z sinða0 þ bÞ;

P2ðzÞ ¼ f2a1ð4z þ 3klÞ cos a0 þ ½�1� 4a21 þ 8zðz þ klÞ þ 2kl þ k2l2 þ ð1� kÞ2p� sin a0g=8;

Q2ðzÞ ¼ f2a1ð4z þ klÞ sin a0 þ ½�1� 4a21 þ 8zðz þ kl=2Þ þ ð1� kÞ2p� cos a0g=8:

ð43Þ
Expressions for the integrals I1ðzÞ and I2ðzÞ in this case take the form
eII1ðzÞ ¼ � 1
p

Z 0:5l

0:5l�kl

ðt þ l=2Þðt � l=2þ klÞsh ~uuðtÞ
t � z

dt;

eII2ðzÞ ¼ 1p
Z 0:5l

0:5l�kl

ðt þ l=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � l=2þ klÞðl=2� tÞ

p
ch ~uuðtÞ

t � z
dt:

ð44Þ
Consistent with the above, the equation for the determination of the relative contact zone length k acquires
the form
~qq
ð1þ cÞc0 cos b

¼ � P2ðbÞ þ eII1ðbÞ
P1ðbÞ

; ð45Þ
and the SIF can be determined by the formula (41) in which QnðaiÞ and eII2ðaiÞ should be taken from for-
mulae (43) and (44).
7. Results and discussion

Since the influence of the shear loading on the contact zone lengths and the SIFs for a crack with one

contact zone (Herrmann and Loboda, 2001) and for the two-contact zone crack without heat flux

(Gautesen, 1993) has been studied earlier the numerical analysis is performed here for the case of a single

crack with one and two contact zones in tension and heat flux fields only. In Figs. 2 and 3 the behaviour of

relative contact zone length k � k1 ¼ k2 of two-contact zone crack for different thermoelastic parameters e
and d ¼ d2=d1 and for a wide range of thermomechanical loading parameter ~qq ¼ r

q1
2

d1gl is depicted. As can be

seen from these plots when ~qq decreases from infinity to zero (it means that the tension r is constant and the
heat flux q1

2 increases from 0 to infinity or q1
2 is constant and r decreases from infinity to 0), the relative

contact zone lengths increase (for e > 0) from small values which correspond to the associated problem



Fig. 3. Dependencies of relative contact zone length k on thermomechanical loading parameter for different distortivity ratio d2=d1 and
e ¼ �0:17.

Fig. 2. Dependencies of relative contact zone length k on thermomechanical loading parameter for different distortivity ratio d2=d1 and
e ¼ 0:17.
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without heat flux to some values which significantly depend on the distortivity ratio d2=d1. When d2=d1
approaches 1 then k approaches 0.5, however, when d2=d1 ¼ 0 the relative zone lengths do not depend on ~qq
and remain the same as for the problem without heat flux. On the other hand for e < 0, the values of k
decreases with decreasing ~qq and depends slightly on d2=d1. As has been shown by Martin-Moran et al.
(1983) there are also physically real solutions for negative values of parameter ~qq, i.e. for r < 0 (q1

2 is

supposed to be always positive). In the present case the same conclusion holds true, i.e. there are three

solutions to Eq. (42) for ~qq 2 ½q0; 0� which satisfy the inequalities (30). One of these solutions is k ¼ 0:5 which
correspond to the completely closed crack. Here q0ðe; d2=d1Þ is a minimum value of ~qq for which Eq. (42) has
a single solution which satisfy to Eq. (30). For ~qq < q0 and e > 0, Eq. (42) has no physically real solutions.
When d2=d1 ! 1 then q0 ! 0. For e < 0 the contact zone lengths decrease with decreasing ~qq.
The dependencies of the dimensionless SIF K
 ¼ K2=r

ffiffi
l

p
at the right crack tip on ~qq for different pa-

rameters of distortivities are depicted in Fig. 4. For positive values of ~qq the absolute value of K
 increases up

to infinity in decreasing ~qq to zero for both positive and negative values of e, and it do not depend signif-
icantly on thermoelastic properties of bimaterial.

In many papers an interface crack with a single contact zone at the crack tip is considered for the sake of
simplicity. According to Gautesen and Dundurs (1987) the ignoring of another contact zone leads to a

negligible small error in the longer contact zone length determination and the associated SIF for a pure

mechanical loading. The results of the correspondent analysis for a thermomechanical loading are pre-

sented in Tables 1 and 2, where the values of ~qq are given for a crack with one ð~qqIÞ and two ð~qqIIÞ contact
zones.



Table 3

SIFs K

I evaluated for values of ~qqII from Table 2 and k from Table 5 for e ¼ 0:17

d

0.1 )1.212 5.040 1.019 0.7719

0.3 )0.7713 )1.719 29.21 2.687

0.5 )0.6312 )0.9476 )1.834 )3.706
0.7 )0.5624 )0.7282 )1.072 )1.410
0.9 )0.5214 )0.6244 )0.8270 )0.9772

Fig. 4. Dependencies of SIF on thermomechanical loading parameter for different distortivity ratio d2=d1 and e ¼ 0:17.

Table 2

Thermomechanical loading parameter values ~qqII for e ¼ 0:17
d k

0.001 0.01 0.05 0.1

0.1 0.333324 )0.0472149 )0.175294 )0.202242
0.3 0.690335 0.183112 0.08803153 )0.0701398
0.5 1.04735 0.413438 0.159231 0.061962

0.7 1.40436 0.643765 0.326493 0.194064

0.9 1.76137 0.874091 0.493755 0.326166

The correspondent dimensionless SIFs K

I (evaluated for a crack with one contact zone) and K


II (for a crack with two contact zones)

evaluated for the values of the thermomechanical loading parameter ~qqII given in Table 1 are presented in Tables 3 and 4.

Table 1

Thermomechanical loading parameter values ~qqI for e ¼ 0:17
d k

0.001 0.01 0.05 0.1

0.1 0.334326 )0.0437699 )0.171459 )0.205251
0.3 0.691907 0.190177 0.00968267 )0.048829
0.5 1.04949 0.424124 0.190825 0.107592

0.7 1.40707 0.658072 0.371967 0.264014

0.9 1.76465 0.892019 0.553109 0.420435
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It can be clearly seen from these tables that for small values of relative contact zones ðk < 0:01Þ the
values of SIFs and relative contact zones evaluated at the assumption that a crack has one and two contact

zones are practically the same. However for essential contact zone lengths the difference of the results



Table 4

SIFs K

II evaluated for values of ~qqII from Table 2 for e ¼ 0:17

d k

0.001 0.01 0.05 0.1

0.1 )1.211 4.972 0.9283 0.5959

0.3 )0.7710 )1.701 27.33 2.348

0.5 )0.6310 )0.9389 )1.735 )3.371
0.7 )0.5622 )0.7222 )1.020 )1.304
0.9 )0.5213 )0.6197 )0.7892 )0.9112

Note that in evaluating K

I , the correspondent values of k, evaluated from Eq. (45) for a crack with one contact zone and presented in

Table 5, were used.

Table 5

Relative contact zone lengths k (for a crack with one contact zone) evaluated for the values of ~qqII from Table 2 and e ¼ 0:17
0.1 0.001004 0.01035 0.05339 0.1142

0.3 0.001004 0.01054 0.06083 0.1351

0.5 0.001005 0.01065 0.06456 0.1511

0.7 0.001005 0.01072 0.06675 0.1583

0.9 0.001005 0.01077 0.06817 0.1623
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presented in Tables 1 and 2 is rather tangible, especially for d tending to 1. The correspondent differences of
the values K


I and K

II given in Tables 3 and 4 are not so essential, however for k ¼ 0:1 it is rather tangible.
8. Conclusion

A plane problem for a set of interface cracks in an infinite isotropic bimaterial under the action of remote
mixed mode mechanical loading and a heat flux is considered. An exact analytical solution, which takes

into account contact zones at both crack tips, is found. The set of transcendental equations (37) for the

determination of the contact zone lengths is formulated and the analytical formulae for the associated stress

intensity factors are given. It is shown that the relative contact zone lengths and the SIFs for an interface

crack under a combined tension–shear ðr–sÞ field and a uniform heat flux ðq1
2 Þ depend on two dimen-

sionless thermomechanical parameters s=r, ~qq ¼ r
q1
2

d1gl and two thermoelastic parameters e, d2=d1.

A numerical analysis has been performed for a single crack with one and two contact zones under the

action of a tensile loading and a heat flux. It follows from the obtained results that for 0 < d2=d16 1 and
e > 0 the contact zone lengths increase in decreasing ~qq from þ1 to some negative limiting value, which

depends on the loading and the thermoelastic parameters of bimaterial. As soon as ~qq becomes smaller than
the mentioned limiting value the crack close abruptly. For negative values of ~qq larger then the negative
limiting values, three possible contact zone lengths and the associated SIFs exist which depend on the

history of the loading. For e < 0, contact zones decrease in decreasing ~qq from þ1 to some negative values
for which crack faces get into contact at the central (if the shear loading is absent) part of the crack, so that

a new contact zone is created.

The comparison of the results obtained in the framework of the models of an interface crack with one

(Tables 1, 3 and 4) and two (Tables 2 and 5) contact zones has been performed. It appears that for a rather

long contact zones ðk > 0:01Þ the difference in the associated results is sensitive, but for the most practically
common cases ðk6 0:01Þ the mentioned difference is negligibly small and the model of a crack with one
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contact zone can be used for the determination of the contact zone length and the associated stress intensity

factor.
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