IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

International Journal of Solids and Structures 41 (2004) 159-175

A thermoelastic problem for interface cracks
with contact zones

I.V. Kharun *, V.V. Loboda

Department of Theoretical and Applied Mechanics, Dniepropetrovsk National University,
Naukova line 13, Dniepropetrovsk 49050, Ukraine

Received 4 March 2003; received in revised form 24 August 2003

Abstract

A problem of thermoelasticity for a set of cracks situated on the interface of two dissimilar isotropic solids under a
combined tension-shear loading and uniform heat flow is considered. The cracks considered are assumed to be com-
pletely open, partially closed with frictionless thermally-conducted contact zones and completely closed. By means of
the complex-function method the problem is reduced to a non-homogeneous Dirichlet-Riemann boundary value
problem, which has been solved in closed form. For the determination of the contact zone lengths the condition of
smooth closure of the crack faces has been used and a set of transcendental equations has been obtained. The closed-
form expressions for the stresses on the interface and the derivatives of the displacement jumps across the interface as
well as the stress intensity factors have been obtained. The numerical examples for a crack with one contact zone and
for a crack with two contact zones have been presented. For these cases the dependencies of the stress intensity factors
and the relative contact zone lengths with respect to the coefficient of the intensity of thermal and mechanical loading
for various thermoelastic constants are presented, and a comparison of the results concerning the crack with one and
two contact zones has been performed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of an interface crack attracted a considerable attention in the literature because of its
importance for applications. Starting from a pioneer paper by Williams (1959) numerous essential results
have been obtained by using classical (open crack) model possessing an oscillating singularity at the crack
tips. Particularly in the frame of this assumption an interface crack with partially insulated crack surfaces in
an isotropic bimaterial under heat flow has been considered analytically by Brown and Erdogan (1968). A
heat transmission coefficient between the adjusted crack surfaces has been taken into account by Kuo
(1990), and the stress intensity factors for an insulated and partially insulated interface crack in an isotropic
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bimaterial under heat flow has been determined by Lee and Shul (1991) and Lee and Park (1995), res-
pectively.

To eliminate the interpenetration of crack faces near the crack tips a new model which takes into account
the crack faces contact zones has been initiated by Comninou (1977). Concerning a pure mechanical
loading this model has been analytically studied and further developed in the papers by Atkinson (1982),
Simonov (1985), Gautesen and Dundurs (1987), Dundurs and Gautesen (1988) Gautesen (1992, 1993),
Loboda (1993). As for a thermal loading a contact zone model for an interface crack in an anisotropic
bimaterial has been analytically considered by Herrmann and Loboda (2001) and for a piezoelectric bi-
material it has been studied by Qin and Mai (1999). It is worth to note that Herrmann and Loboda (2001)
considered a single crack with one contact zone and in the paper by Qin and Mai (1999) thermally insulated
contact zones have been assumed and the problem has been reduced to the singular integral equation that
has been solved numerically. The axisymmetric problem for a thermally insulated penny-shaped interface
crack with a contact zone under tension-thermal loading has been studied by means of the method of
singular integral equations by Martin-Moran et al. (1983) and Barber and Comninou (1983). However, to
the author’s knowledge a plane problem for an arbitrary number of interface cracks with contact zones in
an isotropic bimaterial under thermomechanical loading has not been studied earlier.

In the present paper an exact analytical solution for a set of interface cracks which can be completely
open, partially closed with frictionless thermally-conducted contact zones and completely closed under a
thermomechanical loading is presented. The transcendental equations for the determination of the real
contact zone lengths are formulated. The results of the numerical analysis have been presented for a single
crack with two and one contact zones.

2. Formulation of the problem

Consider a plane problem for a bimaterial composed of two dissimilar isotropic semi-infinite spaces (in
the case of plane strain) or planes (in the case of plane stress) with thermomechanical parameters E;
(Young’s moduli), v; (Poisson’s ratios), k; (coefficients of thermal conductivity) and «; (coefficients of
thermal expansion), where the subscript £ = 1,2 means that the respective term refers to the upper and
lower half-planes, respectively. A set of cracks is assumed on the interface. Under the influence of a uniform
tension—shear loading (¢—) and uniform heat flux (¢5°) applied at infinity, the cracks may partially or
completely open. The open parts of the cracks will be regarded as thermally insulated and the contact
regions as frictionless and perfectly thermally conducted. The points of transition from the bonded interface
to contact regions are denoted as «; (i=1,2,...,I), from the separation to the contact regions, b;
(j=1,2,...,J) and from the bond to separation regions, ¢, (n = 1,2, ..., N) (Fig. 1). The stresses 0(111)x and
6(121)00 shown in Fig. 1 are applied at infinity in order for the continuity condition at infinity will be satisfied.
They should satisfy the following equality (Rice and Sih, 1965)

1+K1 (l)x_l-i-Kz (z)x: |:K2—3_K1—3:|0

o o
o poo U ) My
in which
K 34y for a plane strain,
i 2(14w)’ = T for a plane stress.

As it can be seen in the following, these stresses do not influence on the thermomechanical fields along the
interface and, consecutively, on the SIFs and contact zone lengths.



LV. Kharun, V.V. Loboda | International Journal of Solids and Structures 41 (2004) 159-175 161

P
=

b ot o
CCTTTTTTTTTTTTTTTTTr e H
Wt t ot b e
O;Li WE1L v1, a1,k EUL—
E Ncn—ch—l Cnbjai Mm Lm+1 X E
i Ly !

@)oo | (2)oo

0- 1
< 1 Ep,va, a0,k F—L’
i' ____________ _— T T T T T T T j
VTt s |

Fig. 1. Geometry of the problem.

The continuity conditions at y = 0 in the Cartesian coordinates x, y can be written as

—i =0 i =0 U
(lontel loul =0y [l =0, <€ o)
[612()]=0 [T(x)] =0 xeU+L,
where o'<12 (x,¥), 022 ) (x, ), u ( W V)s qj(-k> (x,y), T®(x,y) are the components of the shear and normal stresses,

the displacements, the heat flux and the temperature, respectively; the superscripts £ = 1 and £ = 2 denote
that associated quantity refers to the upper and lower half-planes, respectively. The brackets denote here
the jump of the correspondent function across the interface, i.e. [f(x)] = £V (x,0) — £ (x,0). The interface
regions M, L are defined as follows:

(N+J)/2 (I+7)/2

M= U M,, U Ly;

U, M, and L, denote the bond, gaps (open parts of the cracks) and contact zones, respectively.

The conditions (la) mean that the fields of stresses and heat flux (612, 022, ¢2) have no discontinuity on
the entire interface (L + M + U). Next conditions (1b) mean that the fields of displacements and temper-
ature are continuous on the bonded parts of the interface (U) and the temperature is continuous in the
contact regions (L) as well since we assume that the contact regions are perfectly thermally conducted.

The boundary conditions in the contact regions (L) and on the open parts of the crack surfaces (M) can
be presented in the form

(1) _ Dix.0) —icV(x.0) = 0
250 =0 o 6<212> 0 o (w0 =0 oy (lc,d)
[12(x)] = 0, 2 (%,0) =0,

The conditions (1c¢) express that contact interaction is frictionless and the crack faces is in contact for x € L.
Expressions (1d) mean that the open parts of the crack faces are unloaded and thermally insulated.

It is expedient to represent the stresses ofﬁ (x,») and heat flux ¢ (x,y) fields in the form

k k)oo *(k k k)oo *(k
ol (x,) = 0 + oV (x,¥), qﬁ)(xy):q,U +4;% (x,), (le)

where o( > =g, 0(1’;)"“ =1, qz) = g5, q1 =0, a (x,y) and ¢;*(x,y) are the fields perturbed bykcracks
which vanlsh at infinity. Allowing for (le), the boundary conditions (lc, d) for o;; «®) (x,y) and q;‘( )(x, ),
acquire the following form

{(,—5‘2)();,0):—17 el {o'glz)(x,())—ia(llz>(x,0):—O'—i—i‘f, e (if.g)
[ur(x)] = 0, 3y (x,0) = —¢5°,
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Taking into account that in the following the perturbed fields only will be considered the asterix (*) here
and in the following in the designation of thermomechanical fields is dropped out.

It should be noted, that the lengths of contact zones (position of the points b;) are unknown initially and
are dependent on the applied load and crack interaction. In the following analysis these positions will be
defined from the additional condition which are equivalent to those suggested by Comninou (1977).

3. Complex-function representation of thermomechanical fields

For a plane problem of thermoelasticity, the following Muskhelishvili’s (1975) complex-function rep-
resentation for stress and displacement fields is used

{ a3 (x,y) — 101 (x,) = @e(2) + Bu(z) + 20, (z) + ¥i(2),
201 (e, v) + 18 (6, 0)] = 1y (2) — 2B0(2) — (@) + (1 + i) Hy [ O4(2) dz

where w, = E;/2(1 + w);

(2)

2(1—‘%)
3—w

o Ey
14+

“Ei_ for a plane strain, 3 —4v; for a plane strain,
H, = Ky =

for a plane stress, for a plane stress,

D (z) = ¢, (2), Pi(z) =, (z), O(z) are the analytical functions of the complex variable z = x + iy in the
upper (k=1) and lower (k =2) half-planes. The overbar denotes complex conjugation. The prime (')
stands for differentiation on the corresponded argument.

The temperature and the heat flux components which define by the formulae

k aT(k) (xay) (k)( kk aT(k) (X,y)

k
qg)(an’):* o 9> x,y) = — dy

can be expressed in terms of the functions 6,(z) as

TO(,y) = 0u(2) + 0:(2), 4y (vp) — i3 (x,9) = ~2ka}(2). (3a.b)
For the further analysis it is expedient to introduce the following functions

wi(z) = 20 (2) + Y (2), (4a)
analytical in the respective half-planes. After replacing z by Z in (4a), one has

Vi(2) = k() — 23 (2), (4b)
that gives after differentiation

Vi(2) = w(2) — 9 (2) — 29 (2)- (4c)

By inserting (4b) and (4c) into (2) and denoting w)(z) = 2(z), Eq. (2) can be rewritten in the form

{aé?(x,w—iai?(x,y)=¢k<z> (z —2)®}(2) + A (2),

) oK) _ (5)
2wy (x,¥) + iy (x,3)] = Kk (2) + (2 — 2) i (2) — i (2) + (1 + xx)Hy [ Ok(2) dz

Using expressions (3a), (3b) and (5), satisfying the continuity conditions (1a) and (1b) and denoting the
boundary values of the functions analytical in the upper and lower half-planes by the superscripts “+”” and
“~" for y — 40 and y — —0, respectively, one can obtain
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@T—Q;:dj;—Qf, xel+M+U,
k19/1++k20/2+:k29/27+k10/;, xeL+M+U

and

K + + (1+x1)H) n+ K l+mH —
zylldi +2NQ +T‘9 2(15 + Q + 292, xe U, (6b)
0 -0 =0, -0, xeU+L.

The argument x has been dropped in the last equations for the sake of shortness. Since two sides of (6a) and
(6b) represent the boundary values of two analytical functions in the respective half-planes, therefore, they
can be analytically extended into the entire plane, so that one can write

ki0)(z) + k0s(z), vy >0,
A(Z) _ { 1 l(Z) + 2_2(2) Yy (7a)
k29/2(z) + klg/l(Z), ryr< 0,
Q >0,
B(z) = { 1) = (), » (7b)
Dy(z) — Q1(z), y<O.
The function A(z) and B(z) are analytical in the whole plane, and
1Ly (2) + - D(2) + 50, (2), ¥ >0,
G(z) = (8a)
12 05(2) + 5= Qi (2) + 522 0,(2), y <0,

o) = 9:1 (z) = 0:2(2), y >0, (sb)
0y(z) = 01(2), » <0,

where G(z) and 6'(z) are analytical in the whole plane except the segments L + M and M, respectively.
Taking into account that the functions are vanished at infinity, according to Liouvill’s theorem one can
derive 4(z) = B(z) = 0, and the expressions (7a)—(8b) can be rewritten as follows

0:(z) = kn0(2)/ (k1 + ko),  O(2) = —k0(2)/ (k1 + ko), m={1if k=2and 2if k =1} )

and
0i(2) = 2a(0) = g|GE) — R0y (z)], v >0,

(10)
P2() = (2) = 7| Gl) — B2 0,2)], v <0,

where g = 2p 11, /(11 + ), v = (K14 + )/ (1apty + 1)
Inserting (9) and (10) into (3b) and (5) and writing the obtained expressions for the interface (y = 0)

result in
o8 (x.0) i1} (x,0) = g|G*(¥) +7G"(x) = &0 (v) + 70 (x)]].
0] + il ()] = G* (x) = G~ (x), (1)
g8 (x.0) = =[O (x) + 0" ()]

where k = kik, [k + k), &= 20k, 7 = 79,/d, and J; are the distortivities (Martin-Moran et al., 1983) of
the respective half-planes which define by the formulae
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o (14+vg) :
5 = {—kk for a plane strain,

ox/ky  for a plane stress.

4. Formulation and solution of the boundary value problem

By use of the formula (113) from the condition (1d,) the following Hilbert problem can be derived
0% (x) + 0 (x) = —igX/k, xEM. (12)
According to Muskhelishvili (1975) the solution to this problem can be presented as

g £ () d
76 =- Zkf()[ v x—z

+R(z)}, (13)

ﬁ 1/2ﬂ . 1/2 ZRnZ" p= J+N)/2,

j=1 n=1

R, are constants to be determined from the condition at infinity and single-valuedness conditions which can
be written as

0'(z) =0(z"), z— oo, /M[0/+(x)—0/_(x)]dx:0, n=1,...,p

Making use of these conditions one can derive the following expressions for R,

1 J N
R, =1, Rp1:§<2bj+20n>, r=W1'ly, (14)
Jj=1 n=1

in which
’dx ¥ 1(x+R, )
r=[Ro,....R, )", W, = / al v, —/ T Uy, n=1,...,p—2.
assacsfonal s PRREE ?
Having evaluated the integral in (13) the expression for 6'(z) acquires the form
: g3’ /() —R(z) )
0z)=——=(1-——2——"2), 15a
) 2k ( 1) (132)
where /> (z) is a principal part of the expansion of the function f'(z) at infinity. Integrating Eq. (15a) gives
192 / /=) -
0(z) = — 1, 15b
@=-LE-10) (15b)
It is worth to note that f,"(x) = —f,"(x), x € M. The function f,(z) has the following behaviour at infinity
fie)=z+ B+ Bi/z+0(7), z— o0 (16)

Satisfying the remaining boundary conditions (1f) and (1g) by means of (11), taking into account (15b)
and (16) and introducing the new function

F(z) = G(z) =gy 01[y./i(2) = 7" (z + Bo)| + & — i3, (17a)
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in which y, = (1 = 9)/(1 —y), 6 =0/g(1 +7) and T = t/g(1 + y) lead to
{F*(x) +9FT(x) =0, xeM,
ImF*(x) = ¢*(x), x€L,
where g*(x) = g53°0170/1(x), 70 = (7" = 7.), 7" = (1 +9)/(1 = 7).
The derived problem (17b) is a combined non-homogeneous Dirichlet-Riemann boundary value

problem. A general solution of such a problem was given by Nakhmein and Nuller (1988), and concerning
the present case a solution unbounded at all points a;, b;, ¢, can be written as

(17b)

FE) = XERE), EE)=PE) +hE) +HYEI06) + b)) (18)
in which

() = elo?) B u+J)/2 d J 1/2 1/2 1sh

(Z) _f(Z)p(Z)7 p(Z) - 11:! (Z_ / 1;[ 1:[ ( )

1+J)/2

go(z):—sZ(z)/MZ(x)Zcx_Z / 7062 dx, 8:1;—7_2), (18¢)
76 =T -a) " T[c—0)" v =[] —a) [ -5)", (184)
0@ = [ 2 dx i) =~ cosfum (g (0 (WplIsh o), x € L, (18¢)
16 = [ g b anls) = coslah (g (0 (Wpla)eh plo), x € L (186)
PL0) = +ilg*(x) ~ wh(0), x €L, (18)

hl(x):nTa X€L1, hl(x):n7+U(d1_x)a xeLla 122,,(1+J)/2,

U(x) ={lif x > 0; 01if x < 0} is the Heaviside’s function. Besides, n; are integers, d; € L, are unknown
poles of X(z) to be determined from the finiteness conditions for ¢(z) at infinity, which can be written as

*-2dx .(1+J)/2 h() o B
g/M DY /Z+() dr=0, 1=2,... (I+J)/2. (19)

n=1
Moreover the polynomials P(z) and Q(z) with real coefficients C;, D; have the following form

m+1 n+1

(2)=> Gz m=J+I+N)/2-1, Q@) => D, n=I+N+J)/2-1, (20a)
k=1 k=1
and the mentioned coefficients are to be determined from the finiteness conditions of F(z) at poles d;
F (d)=0, F (d)=0, (20b)
condition at infinity, which, according to (16) and (17a), can be written as
F(z)=6—it+pfi(z) +O(z"), z— o0 (20c)

and single-valuedness conditions, which, according to the second formula in (11) and (17a), can be pre-
sented in the form
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[ 1 P = siga. [0 - gl (200

here ¢/ and a/ denote the left and right crack tips, respectively.

Taklng the boundary values of (18a)—(18f) by means of Plemelj’s formulae and using (17a) and (11) the
following expressions for the stresses on the interface and for the derivative of the displacement jumps of
the crack faces can be derived:

oy (x)  cos[mhy(x)] [P(x) +pv.0i(x) O(x) + pv.L(x)

ch(p(x) — me) +1

sh(p(x) —me) |, x €Ly,

g(+7) ~ ch(map®) | /00 o)

e1)
0] = 250 [P L0 o ) - 2L B s )] e, (3)
) 2005521’;(’“)] [P (x) ;1(33'11(") ha(x) +i 2% Z‘EZ) 12(x)ch<7)(x)], e L, (24)
0] = = 255 [P0 i) 41250 B cos (] 4 20 ), xe

(25)

here the following notations are introduced: fi(z) = f(z), f2(z) = f(z)/Y(z); p.v. means principal value
of the Couchy’s type integrals; ¢*(x) = ¢*(x) & mei, x € M. Taking boundary values of (18c), one can
derive

$(x) = —iZ* (x)

(I+J)/2
dr L 26
R ol Ral Sl Pt ] xelL, (26w)

(I+J)/2

/Z t—x+ Z /Z+ (=9 ] xEM. (26b)

Further, for the determination of unknown constants C;, D; the coefficients of the following expansions
at infinity are required

Z(z) =P+ G /24 G/ + O, Y() = 2Py /24 /22 + O(27),
1/f@p(z) =z"[1+ /2 +02/22 +OE)],  0(z) = o0+ a1 /z + 02/2* + O(7),

in which

(I+J)/2

1 J 1 J
1O SO NIRRT 0 978D 37 IR0 928D 90 B o
i=1 j=1 i=1 j=1

oo = Agrsyzs = Agsnoe FAgn 2, 0 = A  Agenpa & Al
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Holde I hi(x) 4
Ak—S/MW—f—IZ /Lz+(x)x dx=0, k=(I+J)/2,...
J= J

Due to the last expansions one has for large |z]
X(2) = 2" explion)[1 + py/z + pa/Z + O],z — o0,

where p; = vy + 1oy, p, = vy + 10 + 0oy — o3 /2.
Making use of these expressions, the expansion for F(z) acquires the form

F(z) = zexp(ioto){ Cy1 + 1Dyy1 + [Cp +1(Dy + Dyyany) + (Gt +1D,11)p1] /2
+ [Coet +1(Dyt + Dty + Dyiaty) + (Coy +1(Dy + Dyi1ny))p1 + (Ct +1Dsi1)pa) /2 } + O(277).

(27)
By substituting this expansion into the condition at infinity (20c) one obtains
Cm+1 + iDi’Hrl = )'{1 eXp(*qu)a ] (28)
Co + p1(Cort +1Dyi1) +1(Dy + 1 Duy1) = 1o €xp(—ic),

where y; =1¢3°017), %, = 6 = 1T + 11 5.
Considering further the following equality which can be derived from Plemelj’s formulae

e
F(z)zi./ de-ﬁ-const
211 Jrim X—z

and expanding the integral at infinity lead to

F(z) = const — {217“ /L+M(F+(X)F_(x))dx §+

Comparing this expression with the single-valuedness condition (20d) and using (27) give the equation for
determination of the constants C,,_;, D,_;

Cp1 + pz(CmH + iDnH) + Py [Cm + i(Dn + ’11Dn+l)] + i(anl + D,y + Dn+l’72) =X exp(—ioco), (29)

where 73 = ~ig3317.1.

The obtained relations (18a)—(18g), (19), (20a)—(20d) represent a complete solution of the combined non-
homogeneous Dirichlet-Riemann boundary value problem (17b) which is mathematically correct for any
admissible positions of the points b;. However, in order for the obtained solution describe the solution of
the mechanical problem formulated above the following auxiliary conditions should be satisfied

Wy (b)] =0, o¥(x,0)<0, xeL, [u(x)] =0, xeM. (30)

The first equation in (30) means that the gap close smoothly as x — b;. The remaining inequalities indicate
that the normal stresses at the contact regions are compressive and there is no interpenetration of the crack
surfaces. Using Eq. (23) and the first equation of (30) leads to the following set of transcendental equations
for determination of the contact zone lengths defining the real positions of the points b;

These equations have a number of solutions with respect to each b;, but only those values of b; are the

solutions of the mechanical problem, which satisfy the inequalities in (30). It should be noted as well that
the smooth closure condition is equivalent to the condition of the finiteness of normal stress at the points ;.
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The stress intensity factors (SIFs) at the crack tips a; can be defined as

Ki@) = iKa(@) = lim [ (x,0) — io (x, 0)] v/las 1. (32)
Substituting (22) into (33) gives
O(a;) + L(a;)
Ki(a;) =0, Ky(a;)=—g(l T 33
(@) =0, Kala) = —g(1+7) GRS (33)

where f5(a;) = lim, _,, /[x — a[f2(x).

5. A single crack with two contact zones

Consider now a particular case of the considered problem when a single crack with two contact zones at
the crack tips lies along the interface. In this case one has I =J =2, N =0, m=n =2,

, x € (byd) B ) — (z—=b1)(z—b)
0, xe€(d;a) (d=d), Yiz)= (z—a)(z—a) (34)

p)=z-d, Z(z)=\(z-a)z-b)z-a)z—b), &)=V (-b)z-b).

The function ¢(z) can be expressed in this case as follows

o e e
O e [ G bG—an” D HTTORE g ] >
where
/ / *Z_al 5 b2_bl
g{)](z):(bl—dl)n(ﬂi/z,pl,l")+(Z—b1)K(}"), pl:plz—bl’ 1 by — a;
«Z— a2 « a —b1 11/12
(/)2(2) = (al - QZ)H(R/Q’)var) + (Z_ (,Z])K(I"), P2 :Pzz a y Do a — bl = (1 — il)(l — /Lz)’

03(2) = (b2 = B o) + G = BIF W), pr=pi it i =

(A =A)d]I—-1/2+ 1)
zp:arcsm\/ A7)

(36)

Here and in the following 4, = (b — a1)/1, Ao = (ay — by) /1, I = by — ay; F(Y,r), E(Y,7) and II(, p,r) are
the elliptic integrals of the first, second and third kinds, respectively; K(r), E(r), II(p,r) are the complete
elliptic integrals.

The expressions for o, o; and o, can be obtained by expending (35) in the series at infinity and can be
written in the following form
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-2
% = - {em[H(pr, 1) — K()] +n* [~ (p2,7) + (1 = 41)K(7)]
(1 — /Ll)(l — ig)
- (1 - /ll - ;LZ)H(l//7p37r)}a

o =—/(1=4)1 - /lz){s[K(r’) —E(M)]+n'E(r) — E(,r) —1—;L2 v L = rsin"y sin2y },

2(1 — 4y — Ay sin® )

oy =0.25(4 — )/ (1 = 4)(1 - },2){8[K(r’) —E()] +n"E(r) — E(,r)

Jary/1 — rsin’ y sin 2y

_ [1—)vl—/lzsinzlﬁ—Z(l—/ll)(l—)q—)»2)]},

2(1 = Ay — dpsin® )’ (Ja — )

Eq. (19) for the determination of d in this case takes the following form
F(y,r) =w=¢eK()+n*K(r). (37)

Since the elliptic integral F'(y,r) is positive and F(,r) < K(r) then the following condition for determi-
nation of n* follows from (37)

—eK(F)/K(r) <n* <1—¢eK()/K(r).
Solving Eq. (37) for ¢ and then (36) for d leads to the following expression

(05 — /12)(1 — /11) + /12(05 — ;Ll)SIlz((U,r)
1 —/y — Asn?(w,r) ’

where sn(w, r) is Jacobi elliptic sine-function.
The polynomials P(z) and Q(z) which are determined by the formula (20a) can be presented in the form

01(2) + g5 617,02(2), (38)

d:

P(z) =

sosg PO HEIP), 06) = T

where
Pi(z) = (ocl(d—z) — (o +d§)§,) sin(a + ) + <(d—z)(/11 — —z>

2
+ (d— & — A ;/b) g) cos(ag + ),

Oi(z) = (z(d —2)+ (n —i—d«f)g) sin(ag + ) + (ocl(d —z)— (d— né— a 522) %) cos(ag + f),

Py(z) = PV (z)sin(ag) + PP (z) cos(ag), 0a(z) = OV (z)sin(ag) + 0P (z) cos(ap),

1

P<1>(Z) = 16¢

(E(8d* — 1 — 8y + A1 (2 + A1) — 8d(oy & + Ay — Jg) + 205 — 63120 + 73

— 4061 (OCl — é(/ll — /12))) — (d — Z)(822 -1- 40(? + )vl (2 + /11) — 82(/11 — /12) + 2/12 — 6/1122 + )é)

+p(1 =2y = 1)’ (&(d —2) + &),
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1
PP (z) = 67 (E8(oa 4 o (d — Ay + Aa)) + E(8d% — 1 — 4e? — 4d (Mg — 2) + p(1 — Ay — 12)%))
— 8(d —Z>(O(2 —+ o (Z — l] —+ }vz))é/),
1
Q<])(Z) = @(45(2“2 + al(Zd — )ul + /12)) — (8d2 —-1- 40(% — Sd(il — )\42) + )vl (2 + )Ll) + 22(2 + 12)
— 6iia+p(1 =2y — 10)*) +4(d — 2)Quy + a1 (22 — Ay + 12))E)),

0%(z) = %5,(8(062 do(d — 2y +p)) + E8d* — 1 —do? — 4d(Ay — 4y))

+(d—2)(42(2z — Ay + 22) — 1 —42)E + p(1 — 4y — 70)*((d — 2)& + 8¢))),
where p = 7, /70, tan f = 6 = X. Expressions for the integrals (18e) and (18f) take the form

10 = ok, G =S MO g ([ g MO 4 )
where _

T e =X T
L) = (t = b)(t = bo)(t = d)sh (1), L(0) = /(¢ = ba)(t — b2)(a® = ) (1 — d)ch (2).

Inserting (38;) and (39;) into Eq. (31) one can derive a set of two transcendental equations for the
determination of the contact zone lengths (or ;), which can be written in the form

{qa (b1) + (1+7)30 008 B{Pa(b1) + 11 (B1)] = 0, (40a)
qPi(b2) + (1 +7)ygcos B[Py(b2) + 11 (b2)] =0,
where g = qgﬁ The above equations can be rewritten in the following form, which is much convenient for
numerical analysis
Pz(bl)Jer(bl) __h®) q :_Pz(b1)+71(bl). (40b)
Py(by) + 1i(by)  Pi(b2)” (1 +7)p,c0sf Pi(by)

For the solution of the system (40b), it is expedient to assign a value of b; (b,) and to find further b, (b;)
from the first equation (40b). Then the associated value of g can be found directly from the second formula
(40Db).

According to Eq. (34) and (38;) and (39,), The SIFs can be expressed as

Ky (a;) 1 Oi(a;) , (1+7)7 5
- i I i . 41
T g T a lox(a) + Do) (41)
Consider now an easier case when the external shear loading is absent, i.e. 7 =0 and, consequently,
by, = —b; = b. The equation for determination of the contact zone lengths (or ») can be obtained in a
simpler form if we subtract the first equation of (40a) from the second that leads to
g (o —oyd)cosay +0.5[6°(1 +p) — of] sinog +J* () _o (2)
(14 7)1, d cos o + o sin o -
where
* —b 1 d 1 a
J(b) = _ cos(rm’) / Jo(x)dx +— / J(x)dx — = / Ji(x)dx, J.(x) = (x — d)sho(x).
s —a T Jp T Jq
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As can be seen from this equation, there are only three independent dimensionless parameters, namely
0,/01, & (or y) and g which contact zone lengths depend on.

6. One crack with one contact zone

For the case of a crack with one contact zone at the right crack tip one can write similarly to Section 5

1= V1=
pE) =1, () =0, w=cln-— Y- o =eVT—7 o =-025P1-7

Mz+1/2)
Vz=124 i+ (1 -2)(z-1)2)

Polynomials P(z) and Q(z) which are determined for a general case by the formula (20a) can be presented
by the formulae (38) in which

Pi(z) = (z+ Al/2) cos(ag + ) — oy sin(og + ), O1(z) = —oy cos(og + f§) — zsin(oy + f3),
Py(z) = {20 (4z + 3Al) cosag + [—1 — 4e + 8z(z + A1) 4+ 241 + 2P + (1 — 2)’p]sinap} /8, (43)
05(2) = {204 (4z + Al) sinog 4 [—1 — 422 + 8z(z + 21/2) + (1 — 2)’p] cos o } /8.

¢(z) = 2¢log . @) =£E) =V E+12)(=z—1/2+ ).

Expressions for the integrals 7;(z) and (z) in this case take the form

7 __1/0'5[ (t4+1/2)(t —1/2+ A)sh ¢(¢) dr

1(2) = T Jo.s51-a1 t—z ’ (44)
7oy ] O30 (44 1/2)\/(t = 1/2+ 21)(1/2 — t)ch ¢(¢)

2(2) = T /0517;1 t—z dr.

Consistent with the above, the equation for the determination of the relative contact zone length A acquires
the form
q :7P2(b)+71(b)
(1 + 7)o cos B )

and the SIF can be determined by the formula (41) in which Q,(a;) and I(4;) should be taken from for-
mulae (43) and (44).

(45)

7. Results and discussion

Since the influence of the shear loading on the contact zone lengths and the SIFs for a crack with one
contact zone (Herrmann and Loboda, 2001) and for the two-contact zone crack without heat flux
(Gautesen, 1993) has been studied earlier the numerical analysis is performed here for the case of a single
crack with one and two contact zones in tension and heat flux fields only. In Figs. 2 and 3 the behaviour of
relative contact zone length 1 = 1; = 4, of two-contact zone crack for different thermoelastic parameters ¢
and 0 = J,/9; and for a wide range of thermomechanical loading parameter g = m is depicted. As can be
seen from these plots when g decreases from infinity to zero (it means that the tension ¢ is constant and the
heat flux ¢5° increases from 0 to infinity or ¢5° is constant and ¢ decreases from infinity to 0), the relative
contact zone lengths increase (for ¢ > 0) from small values which correspond to the associated problem
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Fig. 2. Dependencies of relative contact zone length 4 on thermomechanical loading parameter for different distortivity ratio 6,/ and
e=0.17.
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Fig. 3. Dependencies of relative contact zone length 4 on thermomechanical loading parameter for different distortivity ratio 6,/ and
e=—0.17.

without heat flux to some values which significantly depend on the distortivity ratio J,/,. When 0,/
approaches 1 then 4 approaches 0.5, however, when d,/0; = 0 the relative zone lengths do not depend on ¢
and remain the same as for the problem without heat flux. On the other hand for ¢ < 0, the values of 4
decreases with decreasing ¢ and depends slightly on d,/0,. As has been shown by Martin-Moran et al.
(1983) there are also physically real solutions for negative values of parameter g, i.e. for ¢ <0 (¢5° is
supposed to be always positive). In the present case the same conclusion holds true, i.e. there are three
solutions to Eq. (42) for g € [¢/, 0] which satisfy the inequalities (30). One of these solutions is A = 0.5 which
correspond to the completely closed crack. Here ¢’ (e, d,/9;) is @ minimum value of ¢ for which Eq. (42) has
a single solution which satisfy to Eq. (30). For g < ¢’ and ¢ > 0, Eq. (42) has no physically real solutions.
When §,/6; — 1 then ¢’ — 0. For ¢ < 0 the contact zone lengths decrease with decreasing g.

The dependencies of the dimensionless SIF K* = K,/c+/] at the right crack tip on g for different pa-
rameters of distortivities are depicted in Fig. 4. For positive values of g the absolute value of K* increases up
to infinity in decreasing g to zero for both positive and negative values of ¢, and it do not depend signif-
icantly on thermoelastic properties of bimaterial.

In many papers an interface crack with a single contact zone at the crack tip is considered for the sake of
simplicity. According to Gautesen and Dundurs (1987) the ignoring of another contact zone leads to a
negligible small error in the longer contact zone length determination and the associated SIF for a pure
mechanical loading. The results of the correspondent analysis for a thermomechanical loading are pre-
sented in Tables 1 and 2, where the values of g are given for a crack with one (¢1) and two (gy;) contact
zones.
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Fig. 4. Dependencies of SIF on thermomechanical loading parameter for different distortivity ratio d,/d; and ¢ = 0.17.

Table 1
Thermomechanical loading parameter values g; for ¢ = 0.17
1 A
0.001 0.01 0.05 0.1
0.1 0.334326 —-0.0437699 —0.171459 —-0.205251
0.3 0.691907 0.190177 0.00968267 —0.048829
0.5 1.04949 0.424124 0.190825 0.107592
0.7 1.40707 0.658072 0.371967 0.264014
0.9 1.76465 0.892019 0.553109 0.420435
Table 2
Thermomechanical loading parameter values gy for e = 0.17
1 A
0.001 0.01 0.05 0.1
0.1 0.333324 —-0.0472149 —-0.175294 —0.202242
0.3 0.690335 0.183112 0.08803153 —-0.0701398
0.5 1.04735 0.413438 0.159231 0.061962
0.7 1.40436 0.643765 0.326493 0.194064
0.9 1.76137 0.874091 0.493755 0.326166

The correspondent dimensionless SIFs K| (evaluated for a crack with one contact zone) and Kj; (for a crack with two contact zones)
evaluated for the values of the thermomechanical loading parameter gy given in Table 1 are presented in Tables 3 and 4.

Table 3

SIFs K| evaluated for values of g from Table 2 and A from Table 5 for ¢ = 0.17
1)
0.1 -1.212 5.040 1.019 0.7719
0.3 -0.7713 -1.719 29.21 2.687
0.5 -0.6312 —-0.9476 -1.834 -3.706
0.7 -0.5624 -0.7282 -1.072 -1.410
0.9 -0.5214 -0.6244 -0.8270 -0.9772

It can be clearly seen from these tables that for small values of relative contact zones (4 < 0.01) the
values of SIFs and relative contact zones evaluated at the assumption that a crack has one and two contact
zones are practically the same. However for essential contact zone lengths the difference of the results
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Table 4

SIFs Kj; evaluated for values of gy from Table 2 for ¢ = 0.17
0 )

0.001 0.01 0.05 0.1

0.1 -1.211 4972 0.9283 0.5959
0.3 -0.7710 -1.701 27.33 2.348
0.5 -0.6310 -0.9389 -1.735 -3.371
0.7 -0.5622 -0.7222 -1.020 -1.304
0.9 -0.5213 -0.6197 -0.7892 -0.9112

Note that in evaluating K, the correspondent values of /, evaluated from Eq. (45) for a crack with one contact zone and presented in
Table 5, were used.

Table 5
Relative contact zone lengths 2 (for a crack with one contact zone) evaluated for the values of gy from Table 2 and ¢ = 0.17
0.1 0.001004 0.01035 0.05339 0.1142
0.3 0.001004 0.01054 0.06083 0.1351
0.5 0.001005 0.01065 0.06456 0.1511
0.7 0.001005 0.01072 0.06675 0.1583
0.9 0.001005 0.01077 0.06817 0.1623

presented in Tables 1 and 2 is rather tangible, especially for ¢ tending to 1. The correspondent differences of
the values K| and Kj; given in Tables 3 and 4 are not so essential, however for 42 = 0.1 it is rather tangible.

8. Conclusion

A plane problem for a set of interface cracks in an infinite isotropic bimaterial under the action of remote
mixed mode mechanical loading and a heat flux is considered. An exact analytical solution, which takes
into account contact zones at both crack tips, is found. The set of transcendental equations (37) for the
determination of the contact zone lengths is formulated and the analytical formulae for the associated stress
intensity factors are given. It is shown that the relative contact zone lengths and the SIFs for an interface
crack under a combined tension-shear (¢—7) field and a uniform heat flux (¢5°) depend on two dimen-
sionless thermomechanical parameters t/0, § = m and two thermoelastic parameters ¢, d,/9;.

A numerical analysis has been performed for a single crack with one and two contact zones under the
action of a tensile loading and a heat flux. It follows from the obtained results that for 0 < 4,/9; <1 and
& > 0 the contact zone lengths increase in decreasing g from +oco to some negative limiting value, which
depends on the loading and the thermoelastic parameters of bimaterial. As soon as g becomes smaller than
the mentioned limiting value the crack close abruptly. For negative values of g larger then the negative
limiting values, three possible contact zone lengths and the associated SIFs exist which depend on the
history of the loading. For ¢ < 0, contact zones decrease in decreasing g from +o0o to some negative values
for which crack faces get into contact at the central (if the shear loading is absent) part of the crack, so that
a new contact zone is created.

The comparison of the results obtained in the framework of the models of an interface crack with one
(Tables 1, 3 and 4) and two (Tables 2 and 5) contact zones has been performed. It appears that for a rather
long contact zones (/. > 0.01) the difference in the associated results is sensitive, but for the most practically
common cases (4<0.01) the mentioned difference is negligibly small and the model of a crack with one



LV. Kharun, V.V. Loboda | International Journal of Solids and Structures 41 (2004) 159-175 175

contact zone can be used for the determination of the contact zone length and the associated stress intensity
factor.
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